
D-VAE: A Variational Autoencoder for Directed
Acyclic Graphs

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen
Department of Computer Science and Engineering

Washington University in St. Louis
{muhan, jiang.s, z.cui, garnett}@wustl.edu , chen@cse.wustl.edu

Abstract

Graph structured data are abundant in the real world. Among different graph
types, directed acyclic graphs (DAGs) are of particular interest to machine learning
researchers, as many machine learning models are realized as computations on
DAGs, including neural networks and Bayesian networks. In this paper, we study
deep generative models forDAGs, and propose a novelDAG variational autoencoder
(D-VAE). To encodeDAGs into the latent space, we leverage graph neural networks.
We propose an asynchronous message passing scheme that allows encoding the
computations onDAGs, rather than using existing simultaneous message passing
schemes to encode local graph structures. We demonstrate the effectiveness of
our proposedD-VAE through two tasks: neural architecture search and Bayesian
network structure learning. Experiments show that our model not only generates
novel and validDAGs, but also produces a smooth latent space that facilitates
searching forDAGs with better performance through Bayesian optimization.

1 Introduction

Many real-world problems can be posed as optimizing of a directed acyclic graph (DAG) representing
some computational task. For example, the architecture of a neural network is aDAG. The problem
of searching optimal neural architectures is essentially aDAG optimization task. Similarly, one
critical problem in learning graphical models – optimizing the connection structures of Bayesian
networks [1], is also aDAG optimization task.DAG optimization is pervasive in other �elds as well.
In electronic circuit design, engineers need to optimizeDAG circuit blocks not only to realize target
functions, but also to meet speci�cations such as power usage and operating temperature.

DAG optimization is a hard problem. Firstly, the evaluation of aDAG's performance is often time-
consuming (e.g., training a neural network). Secondly, state-of-the-art black-box optimization
techniques such as simulated annealing and Bayesian optimization primarily operate in a continuous
space, thus are not directly applicable toDAG optimization due to the discrete nature ofDAGs. In
particular, to make Bayesian optimization work for discrete structures, we need a kernel to measure
the similarity between discrete structures as well as a method to explore the design space and
extrapolate to new points. Principled solutions to these problems are still lacking.

Is there a way to circumvent the trouble from discreteness? The answer is yes. If we canembed all
DAGs to a continuous spaceand make the space relatively smooth, we might be able to directly use
principled black-box optimization algorithms to optimizeDAGs in this space, or even use gradient
methods if gradients are available. Recently, there has been increased interest in training generative
models for discrete data types such as molecules [2, 3], arithmetic expressions [4], source code
[5], undirected graphs [6], etc. In particular, Kusner et al.[3] developed a grammar variational
autoencoder (G-VAE) for molecules, which is able to encode and decode molecules into and from
acontinuous latent space, allowing one to optimize molecule properties by searching in this well-

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

behaved space instead of a discrete space. Inspired by this work, we propose to also train a variational
autoencoder forDAGs, and optimizeDAG structures in the latent space via Bayesian optimization.

To encodeDAGs, we leverage graph neural networks (GNNs) [7]. Traditionally, aGNN treats all
nodes symmetrically, and extracts local features around nodes bysimultaneouslypassing all nodes'
neighbors' messages to themselves. However, such a simultaneous message passing scheme is
designed to learn local structure features. It might not be suitable forDAGs, since in aDAG: 1) nodes
are not symmetric, but intrinsically have some ordering based on its dependency structure; and 2) we
are more concerned about the computation represented by the entire graph, not the local structures.

In this paper, we propose anasynchronous message passing schemeto encode the computations
on DAGs. The message passing no longer happens at all nodes simultaneously, but respects the
computation dependencies (the partial order) among the nodes. For example, suppose node A has
two predecessors, B and C, in aDAG. Our scheme does not perform feature learning for A until the
feature learning on B and C are both �nished. Then, the aggregated message from B and C is passed
to A to trigger A's feature learning. This means, although the message passing is not simultaneous, it
is also not completely unordered – some synchronization is still required. We incorporate this feature
learning scheme in both our encoder and decoder, and proposeDAG variational autoencoder(D-VAE).
D-VAE has an excellent theoretical property for modelingDAGs– we prove thatD-VAE caninjectively
encodecomputationson DAGs. This means, we can build a mapping from the discrete space to a
continuous latent space so thatevery DAG computation has itsunique embedding in the latent space,
which justi�es performing optimization in the latent space instead of the original design space.

Our contributions in this paper are: 1) We proposeD-VAE, a variational autoencoder forDAGs using
a novel asynchronous message passing scheme, which is able to injectively encode computations.
2) Based onD-VAE, we propose a newDAG optimization framework which performs Bayesian
optimization in a continuous latent space. 3) We applyD-VAE to two problems, neural architecture
search and Bayesian network structure learning. Experiments show thatD-VAE not only generates
novel and validDAGs, but also learns smooth latent spaces effective for optimizingDAG structures.

2 Related work

Variational autoencoder (VAE) [8, 9] provides a framework to learn both a probabilistic generative
modelp� (x jz) (the decoder) as well as an approximated posterior distributionq� (zjx) (the encoder).
VAE is trained through maximizing the evidence lower bound

L (�; � ; x) = Ez� q� (zjx) [logp� (x jz)] � KL[q� (zjx)kp(z)]: (1)

The posterior approximationq� (zjx) and the generative modelp� (x jz) can in principle take arbitrary
parametric forms whose parameters� and� are output by the encoder and decoder networks. After
learningp� (x jz), we can generate new data by decoding latent space vectorsz sampled from the
prior p(z). For generating discrete data,p� (x jz) is often decomposed into a series of decision steps.

Deep graph generative modelsuse neural networks to learn distributions over graphs. There are
mainly three types: token-based, adjacency-matrix-based, and graph-based. Token-based models
[2, 3, 10] represent a graph as a sequence of tokens (e.g., characters, grammar rules) and model these
sequences usingRNNs. They are less general since task-speci�c graph grammars such asSMILES
for molecules [11] are required. Adjacency-matrix-based models [12, 13, 14, 15, 16] leverage the
proxy adjacency matrix representation of a graph, and generate the matrix in one shot or generate
the columns/entries sequentially. In contrast, graph-based models [6, 17, 18, 19] seem more natural,
since they operate directly on graph structures (instead of proxy matrix representations) by iteratively
adding new nodes/edges to a graph based on the existing graph and node states. In addition, the
graph and node states are learned bygraph neural networks (GNNs), which have already shown
their powerful graph representation learning ability on various tasks [20, 21, 22, 23, 24, 25, 26, 27].

Neural architecture search (NAS) aims at automating the design of neural network architectures.
It has seen major advances in recent years [28, 29, 30, 31, 32, 33]. See Hutter et al.[34] for
an overview. NAS methods can be mainly categorized into: 1) reinforcement learning methods
[28, 31, 33] which train controllers to generate architectures with high rewards in terms of validation
accuracy, 2) Bayesian optimization based methods [35] which de�ne kernels to measure architecture
similarity and extrapolate the architecture space heuristically, 3) evolutionary approaches [29, 36, 37]
which use evolutionary algorithms to optimize neural architectures, and 4) differentiable methods

2

[32, 38, 39] which use continuous relaxation/mapping of neural architectures to enable gradient-based
optimization. In Appendix A, we include more detailed discussion on several most related works.

Bayesian network structure learning (BNSL) is to learn the structure of the underlying Bayesian
network from observed data [40, 41, 42, 43]. Bayesian network is a probabilistic graphical model
encoding conditional dependencies among variables via aDAG [1]. One main approach forBNSL
is score-based search, i.e., de�ne some “goodness-of-�t” score for network structures, and search
for one with the optimal score in the discrete design space. Commonly used scores includeBIC
andBDeu, mostly based on marginal likelihood [1]. Due to theNP-hardness [44], however, exact
algorithms such as dynamic programming [45] or shortest path approaches [46, 47] can only solve
small-scale problems. Thus, people have to resort to heuristic methods such as local search and
simulated annealing, etc. [48].BNSL is still an active research area [41, 43, 49, 50, 51].

3 DAG variational autoencoder (D-VAE)

In this section, we describe our proposedDAG variational autoencoder (D-VAE). D-VAE uses an
asynchronous message passing scheme to encode and decodeDAGs. In contrast to the simultaneous
message passing in traditionalGNNs, D-VAE allows encodingcomputationsrather thanstructures.
De�nition 1. (Computation)Given a set of elementary operationsO, a computationC is the
composition of a �nite number of operationso 2 O applied to an input signalx, with the output of
each operation being the input to its succeeding operations.

!

!

"#$

"#$

!"#$

!"#$

! ! "#$

!"#$

!"#$

!

!

"

$

%

& ! "

%

#

$

"

Figure 1: Computations can be represented byDAGs. Note that the
left and rightDAGs represent the same computation.

The set of elementary operationsO
depends on speci�c applications. For
example, when we are interested in
computations given by a calculator,O
will be the set of all the operations de-
�ned on the functional buttons, such
as+ , � , � , � , etc. When modeling
neural networks,O can be a prede-

�ned set of basic layers, such as 3� 3 convolution, 5� 5 convolution, 2� 2 max pooling, etc. A
computation can be represented as a directed acyclic graph (DAG), with directed edges representing
signal �ow directions among node operations. The graph must be acyclic, since otherwise the input
signal will go through an in�nite number of operations so that the computation never stops. Figure 1
shows two examples. Note that the two differentDAGs in Figure 1 represent the same computation,
as the input signal goes through exactly the same operations. We discuss it further in Appendix B.

3.1 Encoding

We �rst introduce the encoder ofD-VAE, which can be seen as a graph neural network (GNN) using
an asynchronous message passing scheme. Given aDAG G, we assume there is a single starting node
which does not have any predecessors (e.g., the input layer of a neural architecture). If there are
multiple such nodes, we add a virtual starting node connecting to all of them.

Similar to standardGNNs, we use an update functionU to compute the hidden state of each node
based on its neighbors' incoming message. The hidden state of nodev is given by:

hv = U(x v ; h in
v); (2)

wherex v is the one-hot encoding ofv's type, andh in
v represents the incoming message tov. h in

v is
given by aggregating the hidden states ofv's predecessors using an aggregation functionA :

h in
v = A(

�
hu : u ! v

	
); (3)

whereu ! v denotes there is a directed edge fromu to v, and
�

hu : u ! v
	

represents a multiset
of v's predecessors' hidden states. If an empty set is input toA (corresponding to the case for the
starting node without any predecessors), we letA output an all-zero vector.

Compared to the traditional simultaneous message passing, inD-VAE the message passing for a node
must wait until all of its predecessors' hidden states have already been computed. This simulates
how a computation is really performed – to execute some operation, we also need to wait until all
its input signals are ready. So how to make sure all the predecessor states are available when a new
node comes? One solution is that we can sequentially perform message passing for nodes following a
topological orderingof theDAG. We illustrate this encoding process in Figure 2.

3

each step according to the decoding distributions described in Section 3.2 and calculate subsequent
decoding distributions based on the sampled results.

3.4 Discussion and model extensions

Relation with RNNs. TheD-VAE encoder and decoder can be reduced to ordinaryRNNs when the
input DAG is reduced to a chain of nodes. Although we proposeD-VAE from aGNN's perspective,
our model can also be seen as a generalization of traditional sequence modeling frameworks [55, 56]
where a timestamp depends only on the timestamp immediately before it, to theDAG case where a
timestamp has multiple previous dependencies. As specialDAGs, similar ideas have been explored
for trees [57, 17], where a node can have multiple incoming edges yet only one outgoing edge.

Bidirectional encoding. D-VAE 's encoding process can be seen as simulating how an input signal
goes through aDAG, with hv simulating the output signal at each nodev. This is also known as
forward propagationin neural networks. Inspired by the bidirectionalRNN [58], we can also use
anotherGRU to reversely encode aDAG (i.e., reverse all edge directions and encode theDAG again),
thus simulating thebackward propagationtoo. After reverse encoding, we get two ending states,
which are concatenated and linearly mapped to their original size as the �nal output state. We �nd this
bidirectional encoding can increase the performance and convergence speed on neural architectures.

Incorporating vertex semantics.Note thatD-VAE currently uses one-hot encoding of node types
asx v , which does not consider the semantic meanings of different node types. For example, a
3 � 3 convolution layer might be functionally very similar to a5 � 5 convolution layer, while being
functionally distinct from a max pooling layer. We expect incorporating such semantic meanings of
node types to be able to further improveD-VAE 's performance. For example, we can use pretrained
embeddings of node types to replace the one-hot encoding. We leave it for future work.

4 Experiments

We validate the proposedDAG variational autoencoder (D-VAE) on twoDAG optimization tasks:

• Neural architecture search.Our neural network dataset contains 19,020 neural architectures from
theENAS software [33]. Each neural architecture has 6 layers (excluding input and output layers)
sampled from:3 � 3 and5 � 5 convolutions,3 � 3 and5 � 5 depthwise-separable convolutions
[59], 3 � 3 max pooling, and3 � 3 average pooling. We evaluate each neural architecture's
weight-sharing accuracy [33] (a proxy of the true accuracy) on CIFAR-10 [60] as its performance
measure. We split the dataset into 90% training and 10% held-out test sets. We use the training set
for VAE training, and use the test set only for evaluation.

• Bayesian network structure learning.Our Bayesian network dataset contains 200,000 random
8-node Bayesian networks from thebnlearn package [61] in R. For each network, we compute the
Bayesian Information Criterion (BIC) score to measure the performance of the network structure
for �tting the Asia dataset [62]. We split the Bayesian networks into 90% training and 10% test
sets. For more details, please refer to Appendix I.

Following [3], we do four experiments for each task:

• Basic abilities of VAE models. In this experiment, we perform standard tests to evaluate the
reconstructive and generative abilities of aVAE model forDAGs, including reconstruction accuracy,
prior validity, uniqueness and novelty.

• Predictive performance of latent representation.We test how well we can use the latent embed-
dings of neural architectures and Bayesian networks to predict their performances.

• Bayesian optimization.This is the motivating application ofD-VAE. We test how well the learned
latent space can be used for searching for high-performanceDAGs through Bayesian optimization.

• Latent space visualization.We visualize the latent space to qualitatively evaluate its smoothness.

Since there is little previous work onDAG generation, we compareD-VAE with four generative
baselines adapted forDAGs: S-VAE, GraphRNN, GCN andDeepGMG. Among them,S-VAE [56] and
GraphRNN [13] are adjacency-matrix-based methods;GCN [22] andDeepGMG [6] are graph-based
methods which use simultaneous message passing to embedDAGs. We include more details about
these baselines and discussD-VAE 's advantages over them in Appendix J. The training details are in
Appendix K. All the code and data are available athttps://github.com/muhanzhang/D-VAE .

6

Table 1: Reconstruction accuracy, prior validity, uniqueness and novelty (%).
Neural architectures Bayesian networks

Methods Accuracy Validity Uniqueness Novelty Accuracy Validity Uniqueness Novelty

D-VAE 99.96 100.00 37.26 100.00 99.94 98.84 38.98 98.01
S-VAE 99.98 100.00 37.03 99.99 99.99 100.00 35.51 99.70

GraphRNN 99.85 99.84 29.77 100.00 96.71 100.00 27.30 98.57
GCN 98.70 99.53 34.00 100.00 99.81 99.02 32.84 99.40

DeepGMG 94.98 98.66 46.37 99.93 47.74 98.86 57.27 98.49

4.1 Reconstruction accuracy, prior validity, uniqueness and novelty

Being able to accurately reconstruct input examples and generate valid new examples are basic
requirements forVAE models. In this experiment, we evaluate the models by measuring 1) how often
they can reconstruct inputDAGs perfectly (Accuracy), 2) how often they can generate valid neural
architectures or Bayesian networks from the prior distribution (Validity), 3) the proportion of unique
DAGs out of the valid generations (Uniqueness), and 4) the proportion of valid generations that are
never seen in the training set (Novelty).

We �rst evaluate each model's reconstruction accuracy on the test sets. Following previous work
[3, 17], we regard the encoding as a stochastic process. That is, after getting the mean and variance
parameters of the posterior approximationq� (zjG), we sample az from it asG's latent vector. To
estimate the reconstruction accuracy, we samplez 10 times for eachG, and decode eachz 10 times
too. Then we report the average proportion of the 100 decodedDAGs that are identical to the input.
To calculate prior validity, we sample 1,000 latent vectorsz from the prior distributionp(z) and
decode each latent vector 10 times. Then we report the proportion of validDAGs in these 10,000
generations. A generatedDAG is valid if it can be read by the original software which generated the
training data. More details about the validity experiment are in Appendix M.1.

We show the results in Table 1. Among all the models,D-VAE andS-VAE generally perform the best.
We �nd that D-VAE, S-VAE andGraphRNN all have near perfect reconstruction accuracy, prior validity
and novelty. However,D-VAE andS-VAE show higher uniqueness, meaning that they generate more
diverse examples.GCN andDeepGMG have worse reconstruction accuracies for neural architectures
due to nonzero training losses. This is because the simultaneous message passing scheme in them
focus more on learning local graph structures, but fail to encode the computation represented by the
entire neural network. Besides, the sum pooling after the message passing might also lose some
global topology information which is important for the reconstruction. The nonzero training loss of
DeepGMG acts like an early stopping regularizer, makingDeepGMG generate more unique graphs.
Nevertheless, reconstruction accuracy is much more important than uniqueness in our tasks, since we
want our embeddings to accurately remap to their original structures after latent space optimization.

4.2 Predictive performance of latent representation.

In this experiment, we evaluate how well the learned latent embeddings can predict the corresponding
DAGs' performances, which tests aVAE 's unsupervised representation learning ability. Being able
to accurately predict a latent point's performance also makes it much easier to search for high-
performance points in this latent space. Thus, the experiment is also an indirect way to evaluate
a VAE latent space's amenability forDAG optimization. Following [3], we train a sparse Gaussian
process (SGP) model [63] with 500 inducing points on the embeddings of training data to predict the
performance of unseen test data. We include theSGPtraining details in Appendix L.

Table 2: Predictive performance of encoded means.

Neural architectures Bayesian networks

Methods RMSE Pearson'sr RMSE Pearson'sr

D-VAE 0.384� 0.002 0.920� 0.001 0.300� 0.004 0.959� 0.001
S-VAE 0.478� 0.002 0.873� 0.001 0.369� 0.003 0.933� 0.001

GraphRNN 0.726� 0.002 0.669� 0.001 0.774� 0.007 0.641� 0.002
GCN 0.485� 0.006 0.870� 0.001 0.557� 0.006 0.836� 0.002

DeepGMG 0.433� 0.002 0.897� 0.001 0.788� 0.007 0.625� 0.002

We use two metrics to evaluate
the predictive performance of the
latent embeddings (given by the
mean of the posterior approximations
q� (zjG)). One is theRMSE between
theSGPpredictions and the true per-
formances. The other is the Pearson
correlation coef�cient (or Pearson's
r), measuring how well the predic-
tion and real performance tend to go

up and down together. A smallRMSE and a large Pearson'sr indicate a better predictive performance.

7

input

max3

conv5

avg3

conv5

avg3

conv5

output

input

avg3

conv5

max3

conv5

output

sep3

avg3

input

avg3

max3

sep5

max3

max3

output

sep3

input

max3

conv5

max3

avg3

avg3

max3

output

input

avg3

conv5

max3

conv5

max3

conv5

output

input

sep3

max3

conv5

max3

conv3

output

conv5

input

sep5

conv5

conv5

sep3

conv5

output

conv5

input

sep5

max3

conv5

conv3

conv3

output

conv5

input

conv3

sep3

max3

sep5

conv3

output

conv5

input

conv3

avg3

conv5

conv3

conv5

output

conv5

!"#$% !"#&'!"#(% !"#&'!"#$" !"#$! !"#%% !&#'! !&#'(!%#$$

)* +,- .* +,-

)** #)** #

Figure 4: Top 5 neural architectures found by each model and their true test accuracies.

!" #$% &"#$%

"'''()*+) !"""#$%&' "''',(*,' "''',-*,. "''',)*/0()*+ !"""#,%-- !"""#$%,. !"""//%-/ !"""0.%/' !"""0.%,'()*+

A

T

E

X D

S

L

B

A

T

D

E

X

S

L

B

A

D

S

L

BE

X

T

A

T

BE

X D

S

L

A

T

E

X D

S

L

B

A

T

BE

DX

S

L

A S

L

BE

X D

T

A

T

B

L

E

DX

S A

BE

DX

S

LT

A

T

BE

DX

S

L

Figure 5: Top 5 Bayesian networks found by each model and theirBIC scores (higher the better).

All the experiments are repeated 10 times and the means and standard deviations are reported. Table
2 shows the results. We �nd that both theRMSE and Pearson'sr of D-VAE are signi�cantly better
than those of the other models. A possible explanation is thatD-VAE encodes the computation, while
a DAG's performance is primarily determined by its computation. Therefore,D-VAE 's latent embed-
dings are more informative about performance. In comparison, adjacency-matrix-based methods
(S-VAE andGraphRNN) and graph-based methods with simultaneous message passing (GCN and
DeepGMG) both only encode (local) graph structures without speci�cally modeling computations on
DAG structures. The better predictive power ofD-VAE favors using a predictive model in its latent
space to guide the search for high performance graphs.

4.3 Bayesian optimization

We perform Bayesian optimization (BO) using the two best models,D-VAE andS-VAE, validated by
previous experiments. Based on theSGPmodel from the last experiment, we perform 10 iterations of
batchBO, and average results across 10 trials. Following Kusner et al.[3], in each iteration, a batch
of 50 points are proposed by sequentially maximizing the expected improvement (EI) acquisition
function, using Kriging Believer [64] to assume labels for previously chosen points in the batch. For
each batch of selected points, we evaluate their decodedDAGs' real performances and add them back
to theSGPto select the next batch. Finally, we check the best-performingDAGs found by each model
to evaluate itsDAG optimization performance.

Neural architectures. For neural architectures, we select the top 15 found architectures in terms
of their weight-sharing accuracies, and fully train them on CIFAR-10's train set to evaluate their
true test accuracies. More details can be found in Appendix H. We show the 5 architectures with the
highest true test accuracies in Figure 4. As we can see,D-VAE in general found much better neural
architectures thanS-VAE. Among the selected architectures,D-VAE achieved a highest accuracy of
94.80%, whileS-VAE 's highest accuracy was only 92.79%. In addition, all the 5 architectures of
D-VAE have accuracies higher than 94%, indicating thatD-VAE 's latent space can stably �nd many
high-performance architectures. More details about ourNAS experiments are in Appendix H.

Bayesian networks.We similarly report the top 5 Bayesian networks found by each model ranked
by theirBIC scores in Figure 5.D-VAE generally found better Bayesian networks thanS-VAE. The
best Bayesian network found byD-VAE achieved aBIC of -11125.75, which is better than the best
network in the training set with aBIC of -11141.89 (a higherBIC score is better). Note thatBIC is in
log scale, thus the probability of our found network to explain the data is actually 1E7 times larger
than that of the best training network. For reference, the true Bayesian network used to generate
the Asia data has aBIC of -11109.74. Although we did not exactly �nd the true network, our found
network was close to it and outperformed all 180,000 training networks. Our experiments show that
searching in an embedding space is a promising direction for Bayesian network structure learning.

4.4 Latent space visualization

In this experiment, we visualize the latent spaces of theVAE models to get a sense of their smoothness.

8

References

[1] Daphne Koller and Nir Friedman.Probabilistic graphical models: principles and techniques. MIT press,
2009.

[2] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules.ACS central science, 4(2):268–276, 2018.

[3] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder. In
International Conference on Machine Learning, pages 1945–1954, 2017.

[4] Matt J Kusner and José Miguel Hernández-Lobato. GANs for sequences of discrete elements with the
Gumbel-softmax distribution.arXiv preprint arXiv:1611.04051, 2016.

[5] Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor,
and Daniel Tarlow. TerpreT: A probabilistic programming language for program induction.arXiv preprint
arXiv:1608.04428, 2016.

[6] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative models
of graphs.arXiv preprint arXiv:1803.03324, 2018.

[7] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehen-
sive survey on graph neural networks.arXiv preprint arXiv:1901.00596, 2019.

[8] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.arXiv preprint arXiv:1312.6114,
2013.

[9] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models.arXiv preprint arXiv:1401.4082, 2014.

[10] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-Directed Variational Autoencoder
for Structured Data.arXiv preprint arXiv:1802.08786, 2018.

[11] David Weininger. SMILES, a chemical language and information system. 1. Introduction to methodology
and encoding rules.Journal of chemical information and computer sciences, 28(1):31–36, 1988.

[12] Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
Variational Autoencoders.arXiv preprint arXiv:1802.03480, 2018.

[13] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
Realistic Graphs with Deep Auto-regressive Models. InInternational Conference on Machine Learning,
pages 5694–5703, 2018.

[14] Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

[15] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. NetGAN: Generating
Graphs via Random Walks.arXiv preprint arXiv:1803.00816, 2018.

[16] Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via regularizing
variational autoencoders. InAdvances in Neural Information Processing Systems, pages 7113–7124, 2018.

[17] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular
graph generation. InProceedings of the 35th International Conference on Machine Learning, pages
2323–2332, 2018.

[18] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L Gaunt. Constrained graph variational
autoencoders for molecule design.arXiv preprint arXiv:1805.09076, 2018.

[19] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. InAdvances in Neural Information Processing
Systems, pages 6412–6422, 2018.

[20] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular �ngerprints.
In Advances in neural information processing systems, pages 2224–2232, 2015.

10

[21] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

[22] Thomas N Kipf and Max Welling. Semi-supervised classi�cation with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[23] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks for
graphs. InInternational conference on machine learning, pages 2014–2023, 2016.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[25] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classi�cation. InThirty-Second AAAI Conference on Arti�cial Intelligence, 2018.

[26] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. InAdvances in Neural
Information Processing Systems, pages 5165–5175, 2018.

[27] Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks.arXiv
preprint arXiv:1904.12058, 2019.

[28] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.arXiv preprint
arXiv:1611.01578, 2016.

[29] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le,
and Alex Kurakin. Large-scale evolution of image classi�ers.arXiv preprint arXiv:1703.01041, 2017.

[30] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. Simple and ef�cient architecture search for
convolutional neural networks.arXiv preprint arXiv:1711.04528, 2017.

[31] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for
scalable image recognition. InProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8697–8710, 2018.

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.arXiv
preprint arXiv:1806.09055, 2018.

[33] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Ef�cient neural architecture search
via parameter sharing.arXiv preprint arXiv:1802.03268, 2018.

[34] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors.Automatic Machine Learning: Methods,
Systems, Challenges. Springer, 2018. In press, available at http://automl.org/book.

[35] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing. Neural
architecture search with Bayesian optimisation and optimal transport. InAdvances in Neural Information
Processing Systems, 2018.

[36] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical
representations for ef�cient architecture search.arXiv preprint arXiv:1711.00436, 2017.

[37] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon, Bala Raju,
Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural networks. InArti�cial
Intelligence in the Age of Neural Networks and Brain Computing, pages 293–312. Elsevier, 2019.

[38] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and
hardware.arXiv preprint arXiv:1812.00332, 2018.

[39] Renqian Luo, Fei Tian, Tao Qin, En-Hong Chen, and Tie-Yan Liu. Neural architecture optimization. In
Advances in neural information processing systems, 2018.

[40] C Chow and Cong Liu. Approximating discrete probability distributions with dependence trees.IEEE
Transactions on Information Theory, 14(3):462–467, 1968.

[41] Tian Gao, Kshitij Fadnis, and Murray Campbell. Local-to-global Bayesian network structure learning. In
International Conference on Machine Learning, pages 1193–1202, 2017.

[42] Tian Gao and Dennis Wei. Parallel Bayesian network structure learning. In Jennifer Dy and Andreas
Krause, editors,Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1685–1694, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR. URLhttp://proceedings.mlr.press/v80/gao18b.html .

11

[43] Dominik Linzner and Heinz Koeppl. Cluster Variational Approximations for Structure Learning of
Continuous-Time Bayesian Networks from Incomplete Data. InAdvances in Neural Information Processing
Systems, pages 7891–7901, 2018.

[44] David Maxwell Chickering. Learning Bayesian networks is NP-complete. InLearning from data, pages
121–130. Springer, 1996.

[45] Ajit P. Singh and Andrew W. Moore. Finding Optimal Bayesian Networks by Dynamic Programming,
2005.

[46] Changhe Yuan, Brandon Malone, and Xiaojian Wu. Learning Optimal Bayesian Networks Using A*
Search. InProceedings of the Twenty-Second International Joint Conference on Arti�cial Intelligence
- Volume Three, IJCAI'11, pages 2186–2191. AAAI Press, 2011. ISBN 978-1-57735-515-1. doi: 10.
5591/978-1-57735-516-8/IJCAI11-364. URLhttp://dx.doi.org/10.5591/978-1-57735-516-8/
IJCAI11-364 .

[47] Changhe Yuan and Brandon Malone. Learning Optimal Bayesian Networks: A Shortest Path Perspective.
Journal of Arti�cial Intelligence Research, 48(1):23–65, October 2013. ISSN 1076-9757. URLhttp:
//dl.acm.org/citation.cfm?id=2591248.2591250 .

[48] Do Chickering, Dan Geiger, and David Heckerman. Learning Bayesian networks: Search methods and
experimental results. InProceedings of Fifth Conference on Arti�cial Intelligence and Statistics, pages
112–128, 1995.

[49] Tomi Silander, Janne Leppä-aho, Elias Jääsaari, and Teemu Roos. Quotient Normalized Maximum
Likelihood Criterion for Learning Bayesian Network Structures. InInternational Conference on Arti�cial
Intelligence and Statistics, pages 948–957, 2018.

[50] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with NO TEARS: Continuous
optimization for structure learning. InAdvances in Neural Information Processing Systems, pages 9472–
9483, 2018.

[51] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG Structure Learning with Graph Neural
Networks.arXiv preprint arXiv:1904.10098, 2019.

[52] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators.Neural networks, 2(5):359–366, 1989.

[53] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

[54] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation.arXiv preprint arXiv:1406.1078, 2014.

[55] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

[56] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space.arXiv preprint arXiv:1511.06349, 2015.

[57] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations from
tree-structured long short-term memory networks.arXiv preprint arXiv:1503.00075, 2015.

[58] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

[59] François Chollet. Xception: Deep learning with depthwise separable convolutions.arXiv preprint, pages
1610–02357, 2017.

[60] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[61] Marco Scutari. Learning Bayesian Networks with the bnlearn R Package.Journal of Statistical
Software, Articles, 35(3):1–22, 2010. ISSN 1548-7660. doi: 10.18637/jss.v035.i03. URLhttps:
//www.jstatsoft.org/v035/i03 .

[62] Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical structures
and their application to expert systems.Journal of the Royal Statistical Society. Series B (Methodological),
pages 157–224, 1988.

12

[63] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. InAdvances in
neural information processing systems, pages 1257–1264, 2006.

[64] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is well-suited to parallelize
optimization. InComputational intelligence in expensive optimization problems, pages 131–162. Springer,
2010.

[65] Tom White. Sampling generative networks.arXiv preprint arXiv:1609.04468, 2016.

[66] Marc-André Zöller and Marco F Huber. Survey on automated machine learning.arXiv preprint
arXiv:1904.12054, 2019.

[67] Jonas Mueller, David Gifford, and Tommi Jaakkola. Sequence to better sequence: continuous revision of
combinatorial structures. InInternational Conference on Machine Learning, pages 2536–2544, 2017.

[68] Nicolo Fusi, Rishit Sheth, and Melih Elibol. Probabilistic matrix factorization for automated machine
learning. InAdvances in Neural Information Processing Systems, pages 3352–3361, 2018.

[69] Benjamin Yackley and Terran Lane. Smoothness and Structure Learning by Proxy. InInternational
Conference on Machine Learning, 2012.

[70] Blake Anderson and Terran Lane. Fast Bayesian network structure search using Gaussian processes. 2009.
Available at https://www.cs.unm.edu/ treport/tr/09-06/paper.pdf.

[71] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.arXiv preprint
arXiv:1412.6980, 2014.

13

